Serine/Threonine Protein Phosphatase-Mediated Control of the Peptidoglycan Cross-Linking l,d-Transpeptidase Pathway in Enterococcus faecium

نویسندگان

  • Emmanuelle Sacco
  • Mélanie Cortes
  • Nathalie Josseaume
  • Louis B. Rice
  • Jean-Luc Mainardi
  • Michel Arthur
چکیده

The last step of peptidoglycan polymerization involves two families of unrelated transpeptidases that are the essential targets of β-lactam antibiotics. D,D-transpeptidases of the penicillin-binding protein (PBP) family are active-site serine enzymes that use pentapeptide precursors and are the main or exclusive cross-linking enzymes in nearly all bacteria. However, peptidoglycan cross-linking is performed mainly by active-site cysteine L,D-transpeptidases that use tetrapeptides in Mycobacterium tuberculosis, Clostridium difficile, and β-lactam-resistant mutants of Enterococcus faecium. We have investigated reprogramming of the E. faecium peptidoglycan assembly pathway by a switch from pentapeptide to tetrapeptide precursors and bypass of PBPs by L,D-transpeptidase Ldtfm. Mutational alterations of two signal transduction systems were necessary and sufficient for activation of the L,D-transpeptidation pathway, which is essentially cryptic in wild-type strains. The first one is a classical two-component regulatory system, DdcRS, that controls the activity of Ldtfm at the substrate level. As previously described, loss of DdcS phosphatase activity leads to production of the D,D-carboxypeptidase DdcY and conversion of the pentapeptide into the tetrapeptide substrate of Ldtfm. Here we show that full bypass of PBPs by Ldtfm also requires increased Ser/Thr protein phosphorylation resulting from impaired activity of phosphoprotein phosphatase StpA. This enzyme negatively controlled the level of protein phosphorylation both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase Stk. In combination with production of DdcY, increased protein phosphorylation by this eukaryotic-enzyme-like Ser/Thr protein kinase was sufficient for activation of the L,D-transpeptidation pathway in the absence of mutational alteration of peptidoglycan synthesis enzymes. Importance: The mechanism of acquisition of high-level ampicillin resistance involving bypass of the penicillin-binding proteins (PBPs) by L,D-transpeptidase Ldtfm was incompletely understood, as production of tetrapeptide precursors following transcriptional activation of the ddc locus by the DdcRS two-component regulatory system was necessary but not sufficient for full activation of the L,D-transpeptidation pathway. Here, we identified the release of a negative control of Ser/Thr protein phosphorylation mediated by phosphatase StpA as the additional factor essential for ampicillin resistance. Thus, bypass of PBPs by Ldtfm requires the modification of signal transduction regulatory systems without any gain of function by mutational alteration of peptidoglycan biosynthetic enzymes. In contrast, previously characterized mechanisms of antibiotic resistance involve horizontal gene transfer and mutational alteration of drug targets. Activation of the L,D-transpeptidation pathway reported in this study is an unprecedented mechanism of emergence of a new metabolic pathway since it involved the recruitment of preexisting functions following modifications of regulatory circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan.

The L,D-transpeptidase Ldt(fm) catalyzes peptidoglycan cross-linking in beta-lactam-resistant mutant strains of Enterococcus faecium. Here, we show that in Escherichia coli Ldt(fm) homologues are responsible for the attachment of the Braun lipoprotein to murein, indicating that evolutionarily related domains have been tailored to use muropeptides or proteins as acyl acceptors in the L,D-transpe...

متن کامل

Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

UNLABELLED The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as "cephalosporins") is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two ceph...

متن کامل

Specificity of L,D-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes.

We report here the first direct assessment of the specificity of a class of peptidoglycan cross-linking enzymes, the L,D-transpeptidases, for the highly diverse structure of peptidoglycan precursors of Gram-positive bacteria. The lone functionally characterized member of this new family of active site cysteine peptidases, Ldt(fm) from Enterococcus faecium, was previously shown to bypass the D,D...

متن کامل

Role of class A penicillin-binding proteins in the expression of beta-lactam resistance in Enterococcus faecium.

Peptidoglycan is polymerized by monofunctional d,d-transpeptidases belonging to class B penicillin-binding proteins (PBPs) and monofunctional glycosyltransferases and by bifunctional enzymes that combine both activities (class A PBPs). Three genes encoding putative class A PBPs (pbpF, pbpZ, and ponA) were deleted from the chromosome of Enterococcus faecium D344R in all possible combinations in ...

متن کامل

The Cpx envelope stress response modifies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU.

The Cpx envelope stress response mediates a complex adaptation to conditions that cause protein misfolding in the periplasm. A recent microarray study demonstrated that Cpx response activation led to changes in the expression of genes known, or predicted, to be involved in cell wall remodeling. We sought to characterize the changes that the cell wall undergoes during activation of the Cpx pathw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014